using UnityEngine;
using System.Collections;
using System;
namespace RootMotion.FinalIK {
	/// 
	/// CCD (Cyclic Coordinate Descent) constrainable heuristic inverse kinematics algorithm.
	/// 
	[System.Serializable]
	public class IKSolverCCD : IKSolverHeuristic {
		
		#region Main Interface
		/// 
		/// CCD tends to overemphasise the rotations of the bones closer to the target position. Reducing bone weight down the hierarchy will compensate for this effect.
		/// 
		public void FadeOutBoneWeights() {
			if (bones.Length < 2) return;
			
			bones[0].weight = 1f;
			float step = 1f / (bones.Length - 1);
			
			for (int i = 1; i < bones.Length; i++) {
				bones[i].weight = step * (bones.Length - 1 - i);
			}
		}
		/// 
		/// Called before each iteration of the solver.
		/// 
		public IterationDelegate OnPreIteration;
		
		#endregion Main Interface
		
		protected override void OnInitiate() {
			if (firstInitiation || !Application.isPlaying) IKPosition = bones[bones.Length - 1].transform.position;
			
			InitiateBones();
		}
		
		protected override void OnUpdate() {
			if (IKPositionWeight <= 0) return;	
			IKPositionWeight = Mathf.Clamp(IKPositionWeight, 0f, 1f);
			if (target != null) IKPosition = target.position;
			if (XY) IKPosition.z = bones[0].transform.position.z;
			
			Vector3 singularityOffset = maxIterations > 1? GetSingularityOffset(): Vector3.zero;
			// Iterating the solver
			for (int i = 0; i < maxIterations; i++) {
				
				// Optimizations
				if (singularityOffset == Vector3.zero && i >= 1 && tolerance > 0 && positionOffset < tolerance * tolerance) break;
				lastLocalDirection = localDirection;
				if (OnPreIteration != null) OnPreIteration(i);
				
				Solve(IKPosition + (i == 0? singularityOffset: Vector3.zero));
			}
			
			lastLocalDirection = localDirection;
		}
        /*
		 * Solve the CCD algorithm
		 * */
        protected void Solve(Vector3 targetPosition) {
			// 2D
			if (XY) {
				for (int i = bones.Length - 2; i > -1; i--) {
					//CCD tends to overemphasise the rotations of the bones closer to the target position. Reducing bone weight down the hierarchy will compensate for this effect.
					float w = bones[i].weight * IKPositionWeight;
					if (w > 0f) {
						Vector3 toLastBone = bones[bones.Length - 1].transform.position - bones[i].transform.position;
						Vector3 toTarget = targetPosition - bones[i].transform.position;
						float angleToLastBone = Mathf.Atan2(toLastBone.x, toLastBone.y) * Mathf.Rad2Deg;
						float angleToTarget = Mathf.Atan2(toTarget.x, toTarget.y) * Mathf.Rad2Deg;
						// Rotation to direct the last bone to the target
						bones[i].transform.rotation = Quaternion.AngleAxis(Mathf.DeltaAngle(angleToLastBone, angleToTarget) * w, Vector3.back) * bones[i].transform.rotation;
					}
					// Rotation Constraints
					if (useRotationLimits && bones[i].rotationLimit != null) bones[i].rotationLimit.Apply();
				}
			// 3D
			} else {
				for (int i = bones.Length - 2; i > -1; i--) {
					// Slerp if weight is < 0
					//CCD tends to overemphasise the rotations of the bones closer to the target position. Reducing bone weight down the hierarchy will compensate for this effect.
					float w = bones[i].weight * IKPositionWeight;
					if (w > 0f) {
						Vector3 toLastBone = bones[bones.Length - 1].transform.position - bones[i].transform.position;
						Vector3 toTarget = targetPosition - bones[i].transform.position;
						
						// Get the rotation to direct the last bone to the target
						Quaternion targetRotation = Quaternion.FromToRotation(toLastBone, toTarget) * bones[i].transform.rotation;
						if (w >= 1) bones[i].transform.rotation = targetRotation;
						else bones[i].transform.rotation = Quaternion.Lerp(bones[i].transform.rotation, targetRotation, w);
					}
					// Rotation Constraints
					if (useRotationLimits && bones[i].rotationLimit != null) bones[i].rotationLimit.Apply();
				}
			}
		}
	}
}