You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			306 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C#
		
	
			
		
		
	
	
			306 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C#
		
	
using UnityEngine;
 | 
						|
using System.Collections;
 | 
						|
 | 
						|
namespace RootMotion {
 | 
						|
	
 | 
						|
	/// <summary>
 | 
						|
	/// Helper methods for dealing with 3-dimensional vectors.
 | 
						|
	/// </summary>
 | 
						|
	public static class V3Tools {
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns yaw angle (-180 - 180) of 'forward' vector.
 | 
						|
        /// </summary>
 | 
						|
        public static float GetYaw(Vector3 forward)
 | 
						|
        {
 | 
						|
            if (forward.x == 0f && forward.z == 0f) return 0f;
 | 
						|
            if (float.IsInfinity(forward.x) || float.IsInfinity(forward.z)) return 0;
 | 
						|
            return Mathf.Atan2(forward.x, forward.z) * Mathf.Rad2Deg;
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns pitch angle (-90 - 90) of 'forward' vector.
 | 
						|
        /// </summary>
 | 
						|
        public static float GetPitch(Vector3 forward)
 | 
						|
        {
 | 
						|
            forward = forward.normalized; // Asin range -1 - 1
 | 
						|
            return -Mathf.Asin(forward.y) * Mathf.Rad2Deg;
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors.
 | 
						|
        /// </summary>
 | 
						|
        public static float GetBank(Vector3 forward, Vector3 up)
 | 
						|
        {
 | 
						|
            Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(Vector3.up, forward));
 | 
						|
            up = q * up;
 | 
						|
            float result = Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg;
 | 
						|
            return Mathf.Clamp(result, -180f, 180f);
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns yaw angle (-180 - 180) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
 | 
						|
        /// </summary>
 | 
						|
        public static float GetYaw(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward)
 | 
						|
        {
 | 
						|
            Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp));
 | 
						|
            Vector3 dirLocal = space * forward;
 | 
						|
            if (dirLocal.x == 0f && dirLocal.z == 0f) return 0f;
 | 
						|
            if (float.IsInfinity(dirLocal.x) || float.IsInfinity(dirLocal.z)) return 0;
 | 
						|
            return Mathf.Atan2(dirLocal.x, dirLocal.z) * Mathf.Rad2Deg;
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns pitch angle (-90 - 90) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
 | 
						|
        /// </summary>
 | 
						|
        public static float GetPitch(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward)
 | 
						|
        {
 | 
						|
            Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp));
 | 
						|
            Vector3 dirLocal = space * forward;
 | 
						|
            forward.Normalize();
 | 
						|
            return -Mathf.Asin(dirLocal.y) * Mathf.Rad2Deg;
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors relative to rotation space defined by spaceForward and spaceUp axes.
 | 
						|
        /// </summary>
 | 
						|
        public static float GetBank(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward, Vector3 up)
 | 
						|
        {
 | 
						|
            Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp));
 | 
						|
            forward = space * forward;
 | 
						|
            up = space * up;
 | 
						|
 | 
						|
            Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(spaceUp, forward));
 | 
						|
            up = q * up;
 | 
						|
            float result = Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg;
 | 
						|
            return Mathf.Clamp(result, -180f, 180f);
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Optimized Vector3.Lerp
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 Lerp(Vector3 fromVector, Vector3 toVector, float weight) {
 | 
						|
			if (weight <= 0f) return fromVector;
 | 
						|
			if (weight >= 1f) return toVector;
 | 
						|
 | 
						|
			return Vector3.Lerp(fromVector, toVector, weight);
 | 
						|
		}
 | 
						|
 | 
						|
		/// <summary>
 | 
						|
		/// Optimized Vector3.Slerp
 | 
						|
		/// </summary>
 | 
						|
		public static Vector3 Slerp(Vector3 fromVector, Vector3 toVector, float weight) {
 | 
						|
			if (weight <= 0f) return fromVector;
 | 
						|
			if (weight >= 1f) return toVector;
 | 
						|
 | 
						|
			return Vector3.Slerp(fromVector, toVector, weight);
 | 
						|
		}
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns vector projection on axis multiplied by weight.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 ExtractVertical(Vector3 v, Vector3 verticalAxis, float weight)
 | 
						|
        {
 | 
						|
            if (weight <= 0f) return Vector3.zero;
 | 
						|
            if (verticalAxis == Vector3.up) return Vector3.up * v.y * weight;
 | 
						|
            return Vector3.Project(v, verticalAxis) * weight;
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Returns vector projected to a plane and multiplied by weight.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 ExtractHorizontal(Vector3 v, Vector3 normal, float weight)
 | 
						|
        {
 | 
						|
            if (weight <= 0f) return Vector3.zero;
 | 
						|
            if (normal == Vector3.up) return new Vector3(v.x, 0f, v.z) * weight;
 | 
						|
            Vector3 tangent = v;
 | 
						|
            Vector3.OrthoNormalize(ref normal, ref tangent);
 | 
						|
            return Vector3.Project(v, tangent) * weight;
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Flattens a vector on a plane defined by 'normal'.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 Flatten(Vector3 v, Vector3 normal)
 | 
						|
        {
 | 
						|
            if (normal == Vector3.up) return new Vector3(v.x, 0f, v.z);
 | 
						|
            return v - Vector3.Project(v, normal);
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing)
 | 
						|
        {
 | 
						|
            if (clampWeight <= 0) return direction;
 | 
						|
 | 
						|
            if (clampWeight >= 1f) return normalDirection;
 | 
						|
 | 
						|
            // Getting the angle between direction and normalDirection
 | 
						|
            float angle = Vector3.Angle(normalDirection, direction);
 | 
						|
            float dot = 1f - (angle / 180f);
 | 
						|
 | 
						|
            if (dot > clampWeight) return direction;
 | 
						|
           
 | 
						|
            // Clamping the target
 | 
						|
            float targetClampMlp = clampWeight > 0 ? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f) : 1f;
 | 
						|
 | 
						|
            // Calculating the clamp multiplier
 | 
						|
            float clampMlp = clampWeight > 0 ? Mathf.Clamp(dot / clampWeight, 0f, 1f) : 1f;
 | 
						|
 | 
						|
            // Sine smoothing iterations
 | 
						|
            for (int i = 0; i < clampSmoothing; i++)
 | 
						|
            {
 | 
						|
                float sinF = clampMlp * Mathf.PI * 0.5f;
 | 
						|
                clampMlp = Mathf.Sin(sinF);
 | 
						|
            }
 | 
						|
 | 
						|
            // Slerping the direction (don't use Lerp here, it breaks it)
 | 
						|
            return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp);
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out bool changed) {
 | 
						|
			changed = false;
 | 
						|
 | 
						|
			if (clampWeight <= 0) return direction;
 | 
						|
 | 
						|
			if (clampWeight >= 1f) {
 | 
						|
				changed = true;
 | 
						|
				return normalDirection;
 | 
						|
			}
 | 
						|
			
 | 
						|
			// Getting the angle between direction and normalDirection
 | 
						|
			float angle = Vector3.Angle(normalDirection, direction);
 | 
						|
			float dot = 1f - (angle / 180f);
 | 
						|
 | 
						|
			if (dot > clampWeight) return direction;
 | 
						|
			changed = true;
 | 
						|
			
 | 
						|
			// Clamping the target
 | 
						|
			float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f;
 | 
						|
			
 | 
						|
			// Calculating the clamp multiplier
 | 
						|
			float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f;
 | 
						|
			
 | 
						|
			// Sine smoothing iterations
 | 
						|
			for (int i = 0; i < clampSmoothing; i++) {
 | 
						|
				float sinF = clampMlp * Mathf.PI * 0.5f;
 | 
						|
				clampMlp = Mathf.Sin(sinF);
 | 
						|
			}
 | 
						|
			
 | 
						|
			// Slerping the direction (don't use Lerp here, it breaks it)
 | 
						|
			return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp);
 | 
						|
		}
 | 
						|
 | 
						|
		/// <summary>
 | 
						|
		/// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
 | 
						|
		/// </summary>
 | 
						|
		public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out float clampValue) {
 | 
						|
			clampValue = 1f;
 | 
						|
			
 | 
						|
			if (clampWeight <= 0) return direction;
 | 
						|
			
 | 
						|
			if (clampWeight >= 1f) {
 | 
						|
				return normalDirection;
 | 
						|
			}
 | 
						|
			
 | 
						|
			// Getting the angle between direction and normalDirection
 | 
						|
			float angle = Vector3.Angle(normalDirection, direction);
 | 
						|
			float dot = 1f - (angle / 180f);
 | 
						|
			
 | 
						|
			if (dot > clampWeight) {
 | 
						|
				clampValue = 0f;
 | 
						|
				return direction;
 | 
						|
			}
 | 
						|
 | 
						|
			// Clamping the target
 | 
						|
			float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f;
 | 
						|
			
 | 
						|
			// Calculating the clamp multiplier
 | 
						|
			float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f;
 | 
						|
			
 | 
						|
			// Sine smoothing iterations
 | 
						|
			for (int i = 0; i < clampSmoothing; i++) {
 | 
						|
				float sinF = clampMlp * Mathf.PI * 0.5f;
 | 
						|
				clampMlp = Mathf.Sin(sinF);
 | 
						|
			}
 | 
						|
			
 | 
						|
			// Slerping the direction (don't use Lerp here, it breaks it)
 | 
						|
			float slerp = clampMlp * targetClampMlp;
 | 
						|
			clampValue = 1f - slerp;
 | 
						|
			return Vector3.Slerp(normalDirection, direction, slerp);
 | 
						|
		}
 | 
						|
 | 
						|
		/// <summary>
 | 
						|
		/// Get the intersection point of line and plane
 | 
						|
		/// </summary>
 | 
						|
		public static Vector3 LineToPlane(Vector3 origin, Vector3 direction, Vector3 planeNormal, Vector3 planePoint) {
 | 
						|
			float dot = Vector3.Dot(planePoint - origin, planeNormal);
 | 
						|
			float normalDot = Vector3.Dot(direction, planeNormal);
 | 
						|
			
 | 
						|
			if (normalDot == 0.0f) return Vector3.zero;
 | 
						|
			
 | 
						|
			float dist = dot / normalDot;
 | 
						|
			return origin + direction.normalized * dist;
 | 
						|
		}
 | 
						|
 | 
						|
		/// <summary>
 | 
						|
		/// Projects a point to a plane.
 | 
						|
		/// </summary>
 | 
						|
		public static Vector3 PointToPlane(Vector3 point, Vector3 planePosition, Vector3 planeNormal) {
 | 
						|
			if (planeNormal == Vector3.up) {
 | 
						|
				return new Vector3(point.x, planePosition.y, point.z);
 | 
						|
			}
 | 
						|
 | 
						|
			Vector3 tangent = point - planePosition;
 | 
						|
			Vector3 normal = planeNormal;
 | 
						|
			Vector3.OrthoNormalize(ref normal, ref tangent);
 | 
						|
 | 
						|
			return planePosition + Vector3.Project(point - planePosition, tangent);
 | 
						|
		}
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Same as Transform.TransformPoint(), but not using scale.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 TransformPointUnscaled(Transform t, Vector3 point)
 | 
						|
        {
 | 
						|
            return t.position + t.rotation * point;
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Same as Transform.InverseTransformPoint(), but not using scale.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 InverseTransformPointUnscaled(Transform t, Vector3 point)
 | 
						|
        {
 | 
						|
            return Quaternion.Inverse(t.rotation) * (point - t.position);
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Same as Transform.InverseTransformPoint();
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 InverseTransformPoint(Vector3 tPos, Quaternion tRot, Vector3 tScale, Vector3 point)
 | 
						|
        {
 | 
						|
            return Div(Quaternion.Inverse(tRot) * (point - tPos), tScale);
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Same as Transform.TransformPoint()
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 TransformPoint(Vector3 tPos, Quaternion tRot, Vector3 tScale, Vector3 point)
 | 
						|
        {
 | 
						|
            return tPos + Vector3.Scale(tRot * point, tScale);
 | 
						|
        }
 | 
						|
 | 
						|
        /// <summary>
 | 
						|
        /// Divides the values of v1 by the values of v2.
 | 
						|
        /// </summary>
 | 
						|
        public static Vector3 Div(Vector3 v1, Vector3 v2)
 | 
						|
        {
 | 
						|
            return new Vector3(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |